The Original GEM Ideology (1988)

- The idea for GEM (Geospace Environment Modeling) arose from a workshop held at the University of Washington in 1987.
 - Organized by Juan Roederer, Dennis Peacock.
 - The magnetosphere is a very complicated natural plasma system, with different regimes that have to be attacked using different kinds of observations and different theoretical/modeling approaches. Crucial processes occur on vastly different scales.
 - For such complicated natural system, our most advanced understanding is encapsulated in large computer codes.
 - Concept that emerged from the workshop was of a research program that aimed at development of a single computer code that would represent the large-scale physics of the Earth's magnetosphere, including the small-scale processes that affect the large-scale.
 - Theory group led by Maha Ashour-Abdalla. The idea of using that computer code as a focus for the overall program came mostly from Chris Goertz and George Siscoe.
- There would be a series of campaigns aimed at understanding boundary layers, substorms..., each campaign with highly coordinated observational and theory/modeling components.
 - Proposed GEM budget was to ramp up to ~\$8 M/yr.
- After all of the 6 campaigns were completed, the final step was to be development of a General Circulation Model for the magnetosphere (analogous to general circulation models for the troposphere)..

GGCM in the Mid-to-Late Nineties

- GGGM Implementation Plan:
 - Need for collaboration of many groups:
 - Envisioned a computational spine
 - Global MHD with embedded supplementary modules to represent non-MHD physics
 - Block-modular structure with different codes reprsenting different spatial regions, with boundaries between them.
 - Envisioned a large national effort to develop a GGCM.
 - Different groups all over the country/world would develop modules representing different regions.
 - Free peer-reviewed independent competitions for the spine and various modules.
 - Some practical problems recognized:
 - Common data interfaces
 - Need for a central facility to coordinate the activity.
 - Code-confidentiality problems.
 - Recognized the need for scientists other than the code's developers to be able to examine results of simulations in detail.
 - To test against observations
 - Try out new ideas.
- Three concept studies were carried out, to develop more specific visions of the GGCM:
 - Dartmouth study based on global MHD spine
 - Rice study based on block-modular structure
 - TRW study emphasized computer-system architecture

GGCM in the Mid-to-Late Nineties

- It was becoming clear that there wasn't going to be a computer program called the GGCM
 - The GGCM had been a dream but also a very useful principle for organizing research.
 - It was clear that the basic goals of the GGCM were going to be realized, though not in a code called "GGCM."
- It was clear that we already had impressive capabilities for simulating Earth's magnetosphere.
- Recognition that the GGCM goal of community availability could be attacked immediately, the GGCM Working Group defined a three-phase program for wider utilization of magnetospheric simulations:
 - Phase 1: Code results easily available to any scientist
 - Best done through a community center
 - Could be implemented immediately via the world-wide web, using existing codes. Jimmy Raeder led by making his results available
 - Phase 2: Any qualified scientist couold commission a model run. (Begins to require a community center)
 - Phase 3: Full GGCM assembled and available
 - Off in the distance.

Big Code-Development Projects with GGCM-Like Characteristics

- Mission Research effort, funded by Defense Special Weapons Agency
 - Basic code covered thermosphere, ionosphere, magnetosphere and interaction with solar wind (MHD spine)
 - Idea of modules was included in the design, to a modest extent (RCM, field-aligned potential drop, substorm, magnetopause reconnection)
 - Accomplishments:
 - Produced a competitive global-MHD code and some interesting science.
 - Team included non-simulation-oriented theorists and observers, demonstrated how non-computational physicists could productively contribute to simulation efforts.
 - Funding decreased sharply after 5 years, before the job was completed.
- Boston University consortium
 - Large team covering solar, heliosphere, magnetosphere, ionosphere, thermosphere
 - Team includes range of experts
 - Separate modules for corona, heliosphere, magnetosphere, ionosphere-thermosphere
 - Block modular with a broader scope.
 - Magnetospheric plan includes modules for radiation belts, ring current...
 - Short-term funding by NSF,now finalist in competition for NSF Science and Technology Center

Big Code-Development Projects with GGCM-Like Characteristics

- Michigan consortium:
 - Large team covering solar, heliosphere, magnetosphere, ionosphere, thermosphere
 - Includes range of experts
 - Plan uses adaptive gridding to use a single overarching MHD code through magnetosphere (MHD spine, applied more broadly than GGCM vision)
 - Magnetospheric modules include inner magnetosphere and radiation belts.
 - Ionosphere-thermosphere is a separate module
 - Funding from NSF KDI program, Air Force MURI, NASA HPCC

Big Code-Development Projects with GGCM-Like Characteristics

- Overall, this is much better than the original GGCM plan in that these "GGCM's" cover the whole space weather problem, not just the magnetosphere.
- It looks like we will get at least two big space weather codes rather than one.
- Departures from the GGCM vision:
 - No free competition for module development.
 - Teams were assembled in the proposal process.
 - Very good people got left out of these consortia

Value of CCMC to GEM: 1. Providing Community Access

- Development of a community code was always the central aim of GEM.
 - Included input from many members of the scientific community
 - Results accessible to the scientific community
- The scientific impact of the GGCM-like megamodels, and the many smaller existing simulation codes that have been developed at various institutions, will be enormously increased if a wide range of scientists can use them
 - For each big code, there is usually a central computational physicist who knows the code best, plus a few others who understand it pretty well.
 - These people are really, really busy.
 - They are only going to do runs to settle questions that they find most interesting. Those might not turn out to be the most interesting, in the long run.
- Wider use of these codes should provide a substantial multiplying effect on the science produced.

Value of CCMC to GEM: 1. Providing Community Access

- The CCMC is providing convenient access to the codes that it hosts. It is a fully developed implementation of GGCM phase-1. It is easy to look at graphical results from the Michigan code, for example.
- It is now possible for an interested scientist to commission a run of the Michigan code, and the CCMC staff will make the run.
- This capability has certainly not yet transformed our field.
 - The capacity has been utilized by a modest number of investigators.
 - Of course, the CCMC staff is also of modest size.
 - People change their ways slowly...
 - As more codes are installed at CCMC and they get better, the utilization of them will increase.
 - CCMC staff will need to grow
- In my GEM-based perspective, this is fundamentally the most important scientific service that CCMC can provide for the GEM community.

Summary Comments on CCMC and GEM

- From my GEM-biased viewpoint, the idea for CCMC arose out of GEM's long-time goal of a community computer model of Earth's magnetosphere.
- The CCMC is half of the realization of GEM's longstanding dream of a GGCM.
 - CCMC offers the promise of converting individual team simulation capabilities into community capabilities.
 - I think this will eventually increase the overall usefulness of these codes by a substantial factor.
- CCMC is a mechanism for validating codes and uncovering their limitations.
 - This is an essential function if GEM research is to have practical benefit.
- CCMC seems the best institution to oversee metrics
 - We have to have quantitative measures of our progress if we are to justify part of our funding as being for practical benefit to society.